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Abstract  

A large number of numerical graph invariants (topological indices) have been define 
and used in many different fields of chemistry. Some of them are used as chemical 
structure descriptors in QS AR (quantitative structure-activity relationship) studies. The 
paper describes the development and implementation of a cx)mputer program for computation 
of the most often used topological indices: n, n In n, A, M 1, M~, X R, F, x 1, W, p, J, D (z), GDL r, 
7~, I~. As these indices reflect different aspects of molecular topology, the intercorrelation 
among them is investigated by applying hierarchical clustering methods. A method 
based on string comparison techniques is developed for the determination of indices 
correlated to biological activity for a studied set of compounds. The biological activity 
prediction on the basis of a subset of topological indices least-correlated amongst 
themselves is done by applying the nearest neighbourhood approach. 

1. Introduction 

In the near past, graph-theoretic methods have been largely applied in many 
fields of chemistry. Recently, we are witnessing the growth of their use as methods 
for characterization of chemical structures and use in the field of structure-activity 
correlations. Graph models of chemical structures retain their full topology which 
largely determines important characteristics of molecules [1]. The topology of the 
molecule represents the mutual relations of the atoms, i.e. the information of the 
connectivity between them in the structure [2]. Mathematicians and chemists have 
undertaken a long search to find suitable parameters derived from the molecular 
graph which will reflect the molecular topology. During the last two decades, a 
large number of numerical graph invariants have been defined and applied in different 
fields of theoretical chemistry, pharmacology, toxicology, and environmental chemistry. 
Such quantitative measures which reflect the structural features of the molecule are 
called topological indices. A topological index of a compound under consideration 
is a graph invariant derived from the chemical graph of that compound. Topological 
indices express in numerical form the topology of the chemical compound represented. 
Topological indices were developed for the purpose of obtaining correlations with 
the physicochemical properties of chemical substances [3] and to express the molecular 
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similarity or dissimilarity. They were used for classification and for prediction of 
chemical and biological properties of the compounds. One of the most important 
developments in recent years has been the increasing use of topological indices in 
the design of drugs and other biologically active substances. One important question 
in drug design is to what extent the structure of a compound and its biological 
activity are correlated. This is also the main task for QSAR (quantitative structure- 
activity relationship) analysis. The basic assumption is that the molecular properties 
are determined primarily by structure and that compounds with similar structure 
lead to similar biological action or other physicochemical properties. Once a relationship 
between the molecular descriptors and biological activity is known, it is used to 
predict the activity of yet untested or even unsynthesized compounds [3,4]. In the 
text that follows, a study of the relatedness of the topological indices is made. 
Special methods were developed for determination of less correlated indices. In the 
process of determination, the ordering of the compounds represented by their topological 
indices and the corresponding biological response value were used. Some property 
predictions were done by applying the nearest neighbour techniques appropriately 
accommodated for the studied set of compounds. 

2. Topological indices 

The graph representation of a molecule consists of points representing the 
molecule's atoms and bonds linking them as straight lines. In graph theory, points 
are usually referred to as vertices and lines are referred to as edges. In chemical 
graphs, the hydrogen atoms are often omitted because they normally do not play 
a major role in determining the structure of a molecule. The topological indices are 
derived from such graphs, called hydrogen-suppressed graphs or, sometimes, skeletal 
structures. Graphs with multiple edges (double, triple bond), weighted vertices 
(heteroatoms), and weighted edges can also be used, although usually they are not 
considered. The length of any line representing a chemical bond and the angles 
between the lines are not considered in this approach. 

A topological index of a compound under consideration is a graph invariant 
derived from the chemical graph of the compound. This number characterizes the 
molecule and it does not depend on how the vertices are enumerated. Indices are 
designed by transforming a chemical graph into a number and the means by which 
this was accomplished varies from index to index. 

A graph invariant may be a polynomial (characteristic polynomial), a set of 
numbers (spectrum of a graph), or a numerical value. In particular, the molecules 
may be described by several quantitative descriptors reflecting different structural 
aspects. The purpose of defining a topological index is sometimes to represent each 
chemical structure with a numerical value, keeping it at the same time as discriminatory 
as possible. This means assigning to every chemical graph a numerical invariant 
such that two graphs have the same value of that index if and only if they are 
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isomorphic. The coincidence of  the invariants of  two graphs is a prerequisite for 
isomorphism, but it is not a sufficient condition. Until now, such a sufficient condition 
and an efficiently computable graph invariant have not been discovered [6]. 

2.1. ADJACENCY MATRIX AND DISTANCE MATRIX 

The fundamental mathematical structures which map the molecular graph G 
into mathematical terms suitable for derivation of  the topological indices are the 
adjacency matrix A(G) and the distance matrix D(G). We denote the molecular graph 
as G = (V, E), V(G) is the vertex set and E(G) is the edge set of G. We assume that 
V = { 1, 2 . . . . .  n}. For a graph with n vertices, the corresponding adjacency matrix 
A(G) is a square n × n matrix. Its entries aij have either value 1 or 0, i.e. vertices 
i and j being connected or not: 

1 i and  j are adjacent, 
A(G) = [aij]n×n aij = 0 otherwise. 

For the derivation of a majority of  topological indices, we assume that G is 
a simple graph, i.e. that G possesses no loops and multiple edges. In this case, we 
are only interested in whether a connection between two atoms exists and we 
assume that the edge has a weight equal to unity. The derivation of  some topological 
indices requires information about the nature of the chemical bonds. It is 
supposed [7] that two atoms connected with more than one edge (i.e. double or 
triple bond) are closer to each other compared to the atoms connected with only one 
edge. A multiple edge is thus represented in the following way [2]: 

(a) multiple edge between two atoms: if the bond order between vertices i and 
W j is b, then ai)= 1/b; 

(b) aromatic systems: if n atoms are connected by m bonds, then every edge in 
- 6 / 9  = 2 / 3 .  this cycle has value n/m, e.g. for benzene ai j -  

The weighted adjacency matrix with entries a~ is denoted as 

AW(G) = [ a~ ] ,× ,  a~ = { .w~j otherwise.i and j are adjacent, 

wijis  the weight of  the edge between vertices i and j. 
The distance matrix D(G) of  a graph G is a square n × n matrix with entries 

dijindicating the distance between all pairs of  vertices. The distance means the 
length of  the shortest path connecting vertices i and j. In our approach, the distance 
matrix is calculated from the adjacency matrix according to the well-known 
algorithm [8] for computing the shortest paths in a graph. The length of the shortest 
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path between two vertices in a graph is equal to the minimum number of edges 
connecting them. In the case of a graph with weighted edges, the weighted distance 
matrix DW(G) is computed from the weighted adjacency matrix AW(G). Its entries 
dff are equal to the minimum sum of weights of edges along the path between 
vertices i and j. 

2.2. TOPOLOGICAL INDICES DERIVED FROM THE ADJACENCY MATRIX 

The following topological indices may be calculated from the adjacency 
matrix: 

(a) Total adjacency index 

i=1 j = l  

is equal to the number of edges. If the total adjacency index is known, then 
a cyclomatic number (number of independent cycles) can be derived as: 
A , = A - n +  1. 

(b) The Zagreb group indices 

M 1 = ~ v  2 , 
i=1 

where vi is the degree of vertex i which is equal to the sum of all entries of 
the ith row in the A(G), 

4, 
vi = 2., aij, 

j = l  

M2 = ~ ~ aijvi vj . 
i=1 j = l  

(c) The Randi( connectivity index 

XR= E 1 
a ij z2 0 ~i ~ " 

(d) The Platt index 

A 
F =  E e l ,  

i=1 
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where ei  is the degree of  the ith edge in the graph. The Platt index can be 
calculated through the equation F = M 1 - 2A when the values of M 1 and A are 
already known. 

(e) The largest eigenvalue index 

X 1 = max {det(A - x  k I)  = 0}  
xk 

is the largest eigenvalue of  the adjacency matrix. 

2.3. TOPOLOGICAL INDICES DERIVED FROM THE DISTANCE MATRIX 

The following indices may be derived from the distance matrix: 

(a) The Wiener index 

w =  ~ dij /2. 
i=1 "= 

w is also called the path number of  a graph. 

(b) The polarity number 

P = ( Z di(3)) ] 2 " i  

p is the number of distances of  length three in a graph (by 4 3), we denote 
entries of  length three in the distance matrix D). 

(c) Average distance sum connectivity index or the Balaban index 

q } 1 
J -  )1,+1 a.. 0 ~ '  

where ,~ is the cyclomatic number, calculated from the adjacency matrix, and 
q is the number of  edges; v~ is also called the distance sum index. The Balaban 
index can be presented in a form which is more suitable for computation: 

j _  
A - n + 2  V~i V ~ " i=1 j = l  
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(d) Mean  square distance topological index 

Y ~7=1 gi ' 

where gi is the number of occurrences of  distance with length i in the graph. 

(e) Graph distance index 

n 

GOt= Z 
i=1 

2.4. CENTRIC TOPOLOGICAL INDICES 

(a) Radius o f  a graph 

r = rain(max dij). 
L j 

2.5. INDICES BASED ON INFORMATION THEORY 

Information theory is a convenient basis for quantitative characterization of 
structures. It introduces simple structural indices called information content. Information- 
theoretic topological indices are derived by the application of  Shannon's formalism 
to chemical graphs [9]. A set A of K elements is derived from the molecular graph 
on the basis of  certain structural characteristics, i.e. the shortest paths (distances) 
in a graph. The set A is partitioned into k disjoint subsets A i of  order n i, ~ =  1 ni = K. 
This partition can be denoted as P = K(nl ,  n2 . . . . .  nk). Subsets A i represent classes 
of an equivalence relation defined on A. Then, Pi = n i ] K  is the probability that a 
randomly selected element of A will lie in the ith subset and a probability distribution 
P d  = K ( p l ,  P2 . . . . .  p~) is constructed. The entropy of this distribution is determined 
by the Shannon formula [10]: 

k 

-i-= - Z Pi log2 Pi 
i=1 

and is called mean information content or the information index of the structure [9]. 
The set of  the shortest paths (distances) in a graph can be distributed into 

subsets in two ways [11]: 

• The total number of distances is partitioned into classes of  distances according 
to their equality or inequality in the following way: 

ply): _ n ( n  - 1 ) 
. . . . .  
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and then the information index for the equality of distances is given by: 

dm~ 2g i 2gi 
~E:__ ~., n ( n -  1~ log2 i=1 n ( n -  1) 

The total distance (the Wiener index) is partitioned into different individual 
distances di: 

P~ = w(g 1 dl, g2d2 . . . . .  gam~dmax) 

and the respective information index for the magnitude of distances is calculated 
by the equation: 

l - ~ = -  ~ gi w log2 gi w"  
i=1 

3. Relatedness of the topological indices 

The large number of existing topological indices raises the question as to 
what extent they are correlated. That is, to what extent do they express the same 
type of structural information. Topological indices have been demonstrated [2, 12] 
to reflect in general the shape and the size of the compounds or the degree and 
nature of branching [5] of the molecular structures they represent. It has been 
investigated and found [13] that there exists strong correlation between X R, w, 7~, 
M I, and x 1. These indices reflect predominantly the Van der Waals volume of the 
molecule. It was also found [14] that indices can be classified into two separate 
classes. Indices belonging to one of these classes express the same structural information: 

(a) w, X e, x 1, M1, !~, I~; 

(b) centdc indices of Balaban. 

The indices w, M 2, Io  e, 7~ and M 1 reflect primarily the size of a molecule, 
i.e. the Van der Waals volume. The centric indices of Balaban express mainly the 
amount of branching, while the largest eigenvalue of the adjacency matrix xl contains 
both: components of shape and size. Principal component analysis (PCA) was 
carded out on the 90 × 90 variable matrix [15] corresponding to 90 topological 
indices calculated for a large data set of chemical structures. It was found that the 
first principal axis corresponds t o , h e  parameters expressing size and shape of the 
molecular graph and the second axis to parameters representing the neighbourhood 
indices. The third axis was found to represent the degree of branching in the 
molecule. 
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These results suggest that a selection of the least correlated topological indices 
may be done and later used as an efficient description of the chemical structure. The 
selected indices should contain information about different structural characteristics. 
Because every topological index has its own specific contribution to the information 
about the molecular structure, it must be noticed that the best description of the 
molecular structure will be obtained by the use of all the different topological 
indices; but this is impractical, especially if indices which are not efficiently computable 
are used. 

If topological indices are used for biological activity prediction for a given 
set of compounds, then all subsets of topological indices should be examined. This 
is a computationally very demanding task, so we try to reduce the number of indices 
by eliminating indices expressing similar structural information. The purpose of  
reducing the number of topological indices is to obtain a subset of  them such that 
it will be as good in property prediction as if the property prediction is done by 
application of a whole set of topological indices. Hence, the task is to reduce the 
number of topological indices with a small loss of the activity prediction accuracy. 

In our approach, the study of the correlations between different sets of topological 
indices and biological response was made for the database consisting of  81 benzamide 
and benzamidine derivatives with anticonvulsant activity (compound nos. 1-17) ,  
dopamine receptor affinity (nos. 18-28)  and with inhibition effects on the ant ibody-  
antigen interactions [ 16]. Their biological activity was represented by the logarithm 
of  the octanol/water partition coefficient. 

3.1. REDUCTION OF THE NUMBER OF TOPOLOGICAL INDICES BY HIERARCHICAL 
CLUSTERING METHODS 

The selection of indices may be clone by application of hierarchical clustering 
methods. Hierarchical clustering methods are widely used in chemical classi- 
fications [17, 18]. Ward's method was found to be the most useful [17, 19] for these 
purposes. 

Sixteen topological indices (n, n In n, A, M 1, M 2, X R, F, x 1 , W, p, J, D (2), GDI, 
r,-[~, -[~) were calculated for 81 compounds. Pearson's correlation coefficients rij 
between standardised data vectors were used as a measure of similarity. The dissimilarity 
matrix obtained by transformation ~ - rij was used as the input data for the computer 
program CLUSE [20]. The clusterization of indices and the corresponding dendrogram 
are shown in fig. 1. The following grouping of  the topological indices was obtained 
through the inspection of  the resulting dendrogram: 

(1) M I , M  2, F,p,  n , A , X  R, nlnn; 

(2) GDI; 

(3) D (2), IDE; 
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C L U S E  - ward [0.00, 4.00] 
e,1 benzamidines, topotogicat indices/corretation 

M1 -Zg 4 

M2-Zg 5 

Pratt 7 

p - polar 10 

n 1 

A 3 

hi- Ran did (5 

n Inn 2 

GDI 13 
D(2) 12 

lED 15 

IWD 16 

lambda-max 8 ] 

J-Balaban 11 J 

w -Wiener g I 
r-radius 14 --~ 

Fig. 1. Hierarchical clustering of topological indices using Ward's method. 

(4) 7~; 

(5) Xl; 

(6) J;  

(7) w, r. 

The next step was choosing an index from each group for a representation 
of  the group. The index with the lowest sum of  correlation coefficients to the others 
in the same group was selected. If the group contained only two indices, then the 
sum of  correlation coefficients between a particular index and all indices belonging 
to all other groups was calculated and the index with the greater sum was marked 
as the representative. The subset of  selected indices corresponding to the groups 
presented in fig. 1 was {M 1, GDI, Io e, 7if, x 1, J, W}. 
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3.2. SELECTION OF TOPOLOGICAL INDICES ON THE BASIS OF THEIR CORRELATION 
TO BIOLOGICAL ACTIVITY 

The purpose of a selection is to obtain a composite index (i.e. a subset of 
indices) with the best predictive power. The selection is done by considering the 
correlation of the indices with the parameters of biological activity. At first, we 
have ordered the compounds according to ascending values of their biological 
response. Then the compounds were ordered according to the values of a particular 
topological index. If this index is correlated to biological activity, then it is expected 
that the ordering of compounds is similar to the ordering of compounds ordered 
according to the values of biological responses. Among all strings of compounds 
which have been ordered according to different topological indices we wanted to find 
those with similar ordering to the string obtained by ordering according to the biological 
activity. A method and procedure from the area of string comparison techniques was 
used for a determination of the similarity between orderings. The measure of 
similarity between two strings was expressed as the sum of all different identities 
found in all traces [21 ] between the first string and all substrings of the second string 
obtained by successively eliminating the lefl-most element. The procedure is explained 
in detail elsewhere [22]. The obtained correlations are displayed in table 1. The 
indices with values greater than 0.8 were selected as the members of the composite 
index. These are {r, D (2), 7 E, n, A, F} .  We can see that the selected indices are from 
the groups of indices which reflect the shape and the size of the molecules. 

Table 1 

Correlations between topological indices 
and biological activity for benzamidines 

Topological Measure of similarity 
index between orderings 

r 0.8522 

D (2) 0.8272 
Io E 0.8250 

n 0.8130 
n In n 0,8130 

A 0.8127 

F 0.8043 
I-~ 0.7997 
p 0.7985 

M 1 0.7981 
w 0.7972 

X R 0.7951 
M 2 0,7932 

GDI 0.7790 
x 1 0,6031 
J 0.1985 
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4. Activity prediction 

The prediction of biological activity was done according to three different 
subsets of topological indices. First the subset of indices obtained by hierarchical 
clustering methods was considered, then the subset of indices derived on the basis 
of correlation to biological activity was used. In the last trial, all sixteen topological 
indices n, n In n, A, M 1 , M 2, X R, F, x 1, w, p, J, D (2), GDI, r, -iz~, -i-ff were considered 
for comparison of the activity prediction accuracy. 

The prediction procedure assumes that the predicted value of biological activity 
depends on the values of some elements in the neighbourhood. By the term neigh- 
bourhood, we mean the compounds which are similar enough to the compound with 
unknown biological activity. A general equation describing this relation is: 

bp redictcd(x) = E b ( y ) f ( s ( x , y ) ) a ( x ) ,  (1) 
yeN 

where N is a selected neighbourhood, f ( s ( x ,  y)) represents a function of a similarity 
s(x, y) betwcen compounds from the neighbourhood and the compound with unknown 
biological activity, while a(x) is a normalizing factor. The measure of similarity 
between compounds x and y was obtained as 1/(1 + e(x, y), where e(x, y) is the Euclidean 
distance between vectors of topological indices for compounds x and y. 

The most often used procedure [17, 18,23] for activity prediction computes 
the predicted value as the average of biological responses of the compounds from 
selected neighbourhoods. Let us assume that the considered neighbourhood N consists 
of m compounds with known biological responses b(i), i = 1 . . . . .  m. In this case, 
the predicted value is: 

1 1 " 
bpredicted(X) = m ~ b ( y ) =  m ~ b(i). (2) 

yeN i=1 

We will try to improve the results of prediction obtained by this procedure by 
weighting the compounds which are structurally more similar to the compound with 
unknown biological activity. This is done by application of the following equation: 

1 ~ (b( i ) -b- ) (s (x ,  i ) - 7 ) ;  
t=l 

b = - -  b(i), ~ = - -  s (x , i ) .  
m m i=1 i=1 

(3) 

In both cases, the prediction error is evaluated by the expression: 

prediction error(x) = Ibp~eaicted(X) - bmeasurea(x)l (4) 
bmeasured 
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Two main ideas concerning the selected neighbourhood were tested. In the 
first, the biological activity was predicted on the basis of the values of activity for 
all compounds whose similarity measure between them and the compound with 
unknown activity was greater than a chosen threshold value. The whole prediction 
error was calculated as the average of prediction errors for all compounds for which 
the prediction was possible. The results of this approach are shown in table 2. 

Table 2 

Property prediction considering the threshold value of the measure of similarity 

Threshold {M 1, GDI, I-~), {r, D (2), ]g, All top. 
value I-~, x 1, J, w} n, A, F} indices 

0.8 4_% 5_% 
7% (53) 8% (79) 

0.7 6% 6-% 
7% (65) 7% (79) 

0,65 6% 
7% (69) 

0.6 6-% 
7% (70) 

05 7% 6% 
8% (75) 7% (81) 

0.4 

3_% 
7% (54) 

6% 
7% (66) 
6_% 
7% (74) 
8% 
9% (77) 

Underlined numbers represent the predictions obtained by considering similarity 
between the compounds from selected neighbourhoods and the unknown one 
(eq. (3)), while the others represent just the average of their biological responses 
(eq. (2)). The numbers in brackets show the number of compounds for which the 
prediction was possible (this means that there were some compounds with degree 
of similarity greater than a chosen threshold value). In this way, very good prediction 
values were obtained because only the compounds with high structural similarity 
were considered. This method does not allow a prediction for all compounds, i.e. 
for those with lower similarity from the threshold value. 

Therefore, another approach was tested. For each compound, the neighbourhood 
consisting of a fixed number of nearest neighbours was considered. The predictions 
were computed according to eq. (3). The results are shown in table 3. We can see 
that with a smaller number of nearest neighbours (3-3) ,  the biological activity for 
all compounds is much better predicted. 

From table 3, it could be concluded that the subset of indices obtained by 
hierarchical clustering methods contains different aspects of the molecular structure, 
while the second subset contains mainly the factors which influence the biological 
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Table 3 

Property prediction based on a fixed number of nearest neighbours 

Number {M 1 , GDI, I~, {r, D (2), /-o F~, All top. 
of NN I~, x l, J, w} n, A, F} indices 

2 8.3% 9% 7% 

3 5.1% 5.8% 4.9% 
4 5.3% 5.4% 5.1% 
5 5.6% 5.8% 5.6% 

6 6% 5.9% 5.7% 

7 6.3% 6% 5.9% 
8 6.4% 6% 6% 

9 6.4% 6.1% 6.2% 

10 6.5% 6.2% 6.2% 
11 6.6% 6.2% 6.3% 

12 6.8% 6.3% 6.4% 

13 7% 6.5% 6.6% 
14 7% 6.8% 6.8% 

15 7% 6.9% 6.9% 

activity. The number of topological indices can be reduced to 5 or 6 indices, which 
is quite convenient especially when the method is applied for elimination of topological 
indices with time-consuming computation (typically, their computation represents 
an NP-hard problem) [2]. 

5. Conclusion 

The graph-theoretic approach is of great importance in the field of chemistry, 
and graph invariants are powerful tools in chemical applications. The complexity 
of the algorithm for the computation of a series of topological indices is polynomial 
because we selected efficiently computable indices. The indices can be easily computed 
and applied for property prediction for a large data set. One important area where 
indices are likely to have a major impact in the future is in the design of drugs. 
Topological indices might substantially shorten the length of the drug design process 
by predicting the activity of compounds directly from their molecular graphs. For 
the best biological response prediction for a given set of compounds, we have to 
examine all subsets of a set of topological indices. Because this is computationally 
too complex, an empirical method was developed. We first tried to eliminate indices 
containing similar structural information by application of hierarchical clustering 
methods and then on the basis of their correlation to biological activity for a set 
of biologically active compounds. In this way, we succeeded in reducing substantially 
the number of indices to be computed without loss of the activity prediction accuracy. 
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